376. 摆动序列
376. 摆动序列
题目
A wiggle sequence is a sequence where the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with one element and a sequence with two non-equal elements are trivially wiggle sequences.
- For example,
[1, 7, 4, 9, 2, 5]
is a wiggle sequence because the differences(6, -3, 5, -7, 3)
alternate between positive and negative. - In contrast,
[1, 4, 7, 2, 5]
and[1, 7, 4, 5, 5]
are not wiggle sequences. The first is not because its first two differences are positive, and the second is not because its last difference is zero.
A subsequence is obtained by deleting some elements (possibly zero) from the original sequence, leaving the remaining elements in their original order.
Given an integer array nums
, return _the length of the longestwiggle subsequence of _nums
.
Example 1:
Input: nums = [1,7,4,9,2,5]
Output: 6
Explanation: The entire sequence is a wiggle sequence with differences (6, -3, 5, -7, 3).
Example 2:
Input: nums = [1,17,5,10,13,15,10,5,16,8]
Output: 7
Explanation: There are several subsequences that achieve this length.
One is [1, 17, 10, 13, 10, 16, 8] with differences (16, -7, 3, -3, 6, -8).
Example 3:
Input: nums = [1,2,3,4,5,6,7,8,9]
Output: 2
Constraints:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
Follow up: Could you solve this in O(n)
time?
题目大意
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列。 第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入: nums = [1,7,4,9,2,5]
输出: 6
解释: 整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入: nums = [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入: nums = [1,2,3,4,5,6,7,8,9]
输出: 2
提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
进阶: 你能否用 O(n)
时间复杂度完成此题?
解题思路
动态规划思路
- 维护两个状态变量
increase
和decrease
:increase
: 以当前元素为结尾的 最近一次上升摆动序列的长度。decrease
: 以当前元素为结尾的 最近一次下降摆动序列的长度。
- 维护两个状态变量
状态转移 遍历数组时,根据当前元素与前一个元素的大小关系更新状态:
- 如果
nums[i] > nums[i - 1]
当前元素为上升趋势,需延续或更新上升摆动序列:increase = decrease + 1
解释:当前元素可以接在之前的下降序列后,因此长度增加。 - 如果
nums[i] < nums[i - 1]
当前元素为下降趋势,需延续或更新下降摆动序列:decrease = increase + 1
解释:当前元素可以接在之前的上升序列后,因此长度增加。 - 如果
nums[i] === nums[i - 1]
跳过,序列不变。
- 如果
结果计算
- 遍历结束后,返回
Math.max(increase, decrease)
即为最终结果。
- 遍历结束后,返回
复杂度分析
- 时间复杂度:
O(n)
,仅需一次遍历即可完成状态更新。 - 空间复杂度:
O(1)
,仅使用常数空间变量。
代码
/**
* @param {number[]} nums
* @return {number}
*/
var wiggleMaxLength = function (nums) {
if (nums.length < 2) return nums.length;
let increase = 1,
decrease = 1;
for (let i = 1; i < nums.length; i++) {
if (nums[i] > nums[i - 1]) {
increase = decrease + 1;
} else if (nums[i] < nums[i - 1]) {
decrease = increase + 1;
}
}
return Math.max(increase, decrease);
};
相关题目
题号 | 标题 | 题解 | 标签 | 难度 | 力扣 |
---|---|---|---|---|---|
2149 | 按符号重排数组 | 数组 双指针 模拟 | 🟠 | 🀄️ 🔗 |