跳至主要內容

375. 猜数字大小 II


375. 猜数字大小 II

🟠   🔖  数学 动态规划 博弈  🔗 力扣open in new window LeetCodeopen in new window

题目

We are playing the Guessing Game. The game will work as follows:

  1. I pick a number between 1 and n.
  2. You guess a number.
  3. If you guess the right number, you win the game.
  4. If you guess the wrong number, then I will tell you whether the number I picked is higher or lower , and you will continue guessing.
  5. Every time you guess a wrong number x, you will pay x dollars. If you run out of money, you lose the game.

Given a particular n, return the minimum amount of money you need to guarantee a win regardless of what number I pick.

Example 1:

Input: n = 10

Output: 16

Explanation: The winning strategy is as follows:

  • The range is [1,10]. Guess 7.

  • If this is my number, your total is $0. Otherwise, you pay $7.

  • If my number is higher, the range is [8,10]. Guess 9.

    • If this is my number, your total is $7. Otherwise, you pay $9.

    • If my number is higher, it must be 10. Guess 10. Your total is $7 + $9 = $16.

    • If my number is lower, it must be 8. Guess 8. Your total is $7 + $9 = $16.

  • If my number is lower, the range is [1,6]. Guess 3.

    • If this is my number, your total is $7. Otherwise, you pay $3.

    • If my number is higher, the range is [4,6]. Guess 5.

      • If this is my number, your total is $7 + $3 = $10. Otherwise, you pay $5.

      • If my number is higher, it must be 6. Guess 6. Your total is $7 + $3 + $5 = $15.

      • If my number is lower, it must be 4. Guess 4. Your total is $7 + $3 + $5 = $15.

    • If my number is lower, the range is [1,2]. Guess 1.

      • If this is my number, your total is $7 + $3 = $10. Otherwise, you pay $1.

      • If my number is higher, it must be 2. Guess 2. Your total is $7 + $3 + $1 = $11.

The worst case in all these scenarios is that you pay $16. Hence, you only need $16 to guarantee a win.

Example 2:

Input: n = 1

Output: 0

Explanation: There is only one possible number, so you can guess 1 and not have to pay anything.

Example 3:

Input: n = 2

Output: 1

Explanation: There are two possible numbers, 1 and 2.

  • Guess 1.

    • If this is my number, your total is $0. Otherwise, you pay $1.

    • If my number is higher, it must be 2. Guess 2. Your total is $1.

The worst case is that you pay $1.

Constraints:

  • 1 <= n <= 200

题目大意

我们正在玩一个猜数游戏,游戏规则如下:

  1. 我从 1n 之间选择一个数字。
  2. 你来猜我选了哪个数字。
  3. 如果你猜到正确的数字,就会 赢得游戏
  4. 如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
  5. 每当你猜了数字 x 并且猜错了的时候,你需要支付金额为 x 的现金。如果你花光了钱,就会 输掉游戏 。

给你一个特定的数字 n ,返回能够 确保你获胜 的最小现金数,不管我选择那个数字

解题思路

f(i, j) 表示在范围 [i, j] 内确保胜利的最少金额,目标是计算 f(1, n)

假设第一次猜的数字是 x 并且猜错,则需要支付金额 x,当 x 大于所选数字时,为了确保胜利还需要支付的金额是 f(1, x - 1),当 x 小于所选数字时,为了确保胜利还需要支付的金额是 f(x + 1, n)。为了在任何情况下都能确保胜利,应考虑最坏情况,计算 f(1, n) 时应取上述两者的最大值:f(1, n) = x + max(f(1, x − 1), f(x + 1, n))

由于 f(1, x - 1)f(x + 1, n) 都是比原始问题 f(1, n) 规模更小的问题,因此可以使用动态规划的方法求解。

为了将确保胜利的金额最小化,需要遍历从 1n 的所有可能的 x,使得 f(1, n) 的值最小:

f(1, n) = min{x + max⁡(f(1, x − 1), f(x + 1, n))} (⁡1 ≤ x ≤ n)

创建行数和列数都是 n + 1 的二维数组 f,其中 f[i][j] 即为状态 f(i, j)

在根据状态转移方程计算时需要注意下标的边界问题,当 j = n 时,如果 x = jx + 1 > n,此时 f[x][j] 会出现下标越界。为了避免出现下标越界,计算 f[i][j] 的方法是:首先令 f[i][j] = j + f[i][j - 1],然后遍历 i ≤ x < j 的每个 x,更新 f[i][j] 的值。

代码

/**
 * @param {number} n
 * @return {number}
 */
var getMoneyAmount = function (n) {
	const f = new Array(n + 1).fill(0).map(() => new Array(n + 1).fill(0));
	for (let i = n - 1; i >= 1; i--) {
		for (let j = i + 1; j <= n; j++) {
			f[i][j] = j + f[i][j - 1];
			for (let x = i; x < j; x++) {
				f[i][j] = Math.min(f[i][j], x + Math.max(f[i][x - 1], f[x + 1][j]));
			}
		}
	}
	return f[1][n];
};

相关题目

题号标题题解标签难度力扣
294翻转游戏 II 🔒记忆化搜索 数学 动态规划 2+🟠🀄️open in new window 🔗open in new window
374猜数字大小[✓]二分查找 交互🟢🀄️open in new window 🔗open in new window
464我能赢吗位运算 记忆化搜索 数学 3+🟠🀄️open in new window 🔗open in new window
658找到 K 个最接近的元素[✓]数组 双指针 二分查找 3+🟠🀄️open in new window 🔗open in new window