375. 猜数字大小 II
375. 猜数字大小 II
题目
We are playing the Guessing Game. The game will work as follows:
- I pick a number between
1
andn
. - You guess a number.
- If you guess the right number, you win the game.
- If you guess the wrong number, then I will tell you whether the number I picked is higher or lower , and you will continue guessing.
- Every time you guess a wrong number
x
, you will payx
dollars. If you run out of money, you lose the game.
Given a particular n
, return the minimum amount of money you need to guarantee a win regardless of what number I pick.
Example 1:
Input: n = 10
Output: 16
Explanation: The winning strategy is as follows:
The range is [1,10]. Guess 7.
If this is my number, your total is $0. Otherwise, you pay $7.
If my number is higher, the range is [8,10]. Guess 9.
If this is my number, your total is $7. Otherwise, you pay $9.
If my number is higher, it must be 10. Guess 10. Your total is $7 + $9 = $16.
If my number is lower, it must be 8. Guess 8. Your total is $7 + $9 = $16.
If my number is lower, the range is [1,6]. Guess 3.
If this is my number, your total is $7. Otherwise, you pay $3.
If my number is higher, the range is [4,6]. Guess 5.
If this is my number, your total is $7 + $3 = $10. Otherwise, you pay $5.
If my number is higher, it must be 6. Guess 6. Your total is $7 + $3 + $5 = $15.
If my number is lower, it must be 4. Guess 4. Your total is $7 + $3 + $5 = $15.
If my number is lower, the range is [1,2]. Guess 1.
If this is my number, your total is $7 + $3 = $10. Otherwise, you pay $1.
If my number is higher, it must be 2. Guess 2. Your total is $7 + $3 + $1 = $11.
The worst case in all these scenarios is that you pay $16. Hence, you only need $16 to guarantee a win.
Example 2:
Input: n = 1
Output: 0
Explanation: There is only one possible number, so you can guess 1 and not have to pay anything.
Example 3:
Input: n = 2
Output: 1
Explanation: There are two possible numbers, 1 and 2.
Guess 1.
If this is my number, your total is $0. Otherwise, you pay $1.
If my number is higher, it must be 2. Guess 2. Your total is $1.
The worst case is that you pay $1.
Constraints:
1 <= n <= 200
题目大意
我们正在玩一个猜数游戏,游戏规则如下:
- 我从
1
到n
之间选择一个数字。 - 你来猜我选了哪个数字。
- 如果你猜到正确的数字,就会 赢得游戏 。
- 如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
- 每当你猜了数字
x
并且猜错了的时候,你需要支付金额为x
的现金。如果你花光了钱,就会 输掉游戏 。
给你一个特定的数字 n
,返回能够 确保你获胜 的最小现金数,不管我选择那个数字 。
解题思路
用 f(i, j)
表示在范围 [i, j]
内确保胜利的最少金额,目标是计算 f(1, n)
。
假设第一次猜的数字是 x
并且猜错,则需要支付金额 x
,当 x
大于所选数字时,为了确保胜利还需要支付的金额是 f(1, x - 1)
,当 x
小于所选数字时,为了确保胜利还需要支付的金额是 f(x + 1, n)
。为了在任何情况下都能确保胜利,应考虑最坏情况,计算 f(1, n)
时应取上述两者的最大值:f(1, n) = x + max(f(1, x − 1), f(x + 1, n))
。
由于 f(1, x - 1)
和 f(x + 1, n)
都是比原始问题 f(1, n)
规模更小的问题,因此可以使用动态规划的方法求解。
为了将确保胜利的金额最小化,需要遍历从 1
到 n
的所有可能的 x
,使得 f(1, n)
的值最小:
f(1, n) = min{x + max(f(1, x − 1), f(x + 1, n))} (1 ≤ x ≤ n)
创建行数和列数都是 n + 1
的二维数组 f
,其中 f[i][j]
即为状态 f(i, j)
。
在根据状态转移方程计算时需要注意下标的边界问题,当 j = n
时,如果 x = j
则 x + 1 > n
,此时 f[x][j]
会出现下标越界。为了避免出现下标越界,计算 f[i][j]
的方法是:首先令 f[i][j] = j + f[i][j - 1]
,然后遍历 i ≤ x < j
的每个 x,更新 f[i][j]
的值。
代码
/**
* @param {number} n
* @return {number}
*/
var getMoneyAmount = function (n) {
const f = new Array(n + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = n - 1; i >= 1; i--) {
for (let j = i + 1; j <= n; j++) {
f[i][j] = j + f[i][j - 1];
for (let x = i; x < j; x++) {
f[i][j] = Math.min(f[i][j], x + Math.max(f[i][x - 1], f[x + 1][j]));
}
}
}
return f[1][n];
};
相关题目
题号 | 标题 | 题解 | 标签 | 难度 |
---|---|---|---|---|
294 | 翻转游戏 II 🔒 | 记忆化搜索 数学 动态规划 2+ | ||
374 | 猜数字大小 | [✓] | 二分查找 交互 | |
464 | 我能赢吗 | 位运算 记忆化搜索 数学 3+ | ||
658 | 找到 K 个最接近的元素 | 数组 双指针 二分查找 3+ |